

# BrainsUnite part II How do we get to something that works?

23 june 2008 Auke van Balen



# Happy to be here despite...





## **Topics to discuss**

- Remote microscopy scenarios
  - Remote observation
  - Remote operation
  - Remote experiments
  - Portal for experiments
- Titan system architecture
- The Condor project
- TEAM stage integration
- How to proceed from here
  - Who does what when
- wvttk



# We did think of it (start of Tecnai, 1992)

I&E ONTWIKKELING E.O.

datum: 23-03-1992

DSX 6-4-7439

AT-7

- 6. The ergonomics of the user interface on the platform, in terms of par layout and screen layout, shall be a primary concern. The reaction speed of the instrument, via the user interface and three remote control, shall be a primary concern.
- Remote control and remote diagnosis shall be an essential part of the instrument.
- The platform shall allow adaptation and tuning of the instrument's software by advanced users. These adaptations shall be possible on tinstrument itself.
- The platform shall allow updating the software of instruments in the field to be a low cost operation.
- 10. The platform shall allow extension of the instrument's capabilities automated functions like autofocus, autostigmator.



#### Scenario 1: Remote observation

- Operator at the microscope
- Observator(s) at a distance

- Critical: get screen content at the other site
- No problem with response time
- Operator knows how to do it



## Scenario 2: Remote operation

- Operator at the remote site
- Full set of control pads and mouse/keyboard provided
- Observators local or remote

- Critical: get screen content at the other site
- Response time due to network can be an issue
- Is all information available at the remote site?
- Remote operator knowledge of the instrument



## Scenario 3: Remote experiments

- Experiment runs at instrument, operator observers from a distance
- Intelligence on the instrument side
- Instrument must be autonomous as possible
- How to handle exceptions?
- Example: TEM/STEM tomography data acquisition
  - Most effort in ensuring correct operation at all times



## Portal for experiments

- Remote experimentation requires a central place for administration, granting privileges, controlling access, datastorage etc
- Communication facilties: voice/messaging/shared whiteboard/shared files
- Security in terms of "who can do what when" always important
- That is where Collaboratory comes in



## Remote microscopy critical points

## Screen content transport

- Grabbing (VNC, Remote Desktop, hw box)
- Display

Network bandwidth and –latency

Difference between local and remote GUI

Don't try to make just another GUI
 If you would like to build GUIs for microscopes, join FEI



# Titan system architecture

**User Interface** 

**Scripting interface** 

Behaviour

MDLGonio MDLOptics

HAL

HAL

TIA

DM

MDLAcq

HAL



## Titan scripting interface

#### Provides access to most used functions

- Gun/Stage/Optics/Gonio
- Acquisition (as of Titan 1.0) CCD and STEM
- Not to monochromator, correctors as these are not present on all systems
- Every imodule in Tecnai & Titan has a well-defined interface
- Can be made available but creates maintenance/upgrade problem
- We are moving to an Object Model for the complete system



## The Condor project

#### Electron microscopes: Precision Critical Instruments

At the edge of technology

At the edge of manufacturing reproducibility

Cross-disciplinary designs

- Improvements mostly in combinations of multiple disciplines e.g. required positioning precision only achievable by beam + stage + control + software
- Mutual understanding essential

Relatively unpredictable operational behavior

- Drift, hysteresis, ...
- Behavior influenced by environment



## The Condor project

A systems architecture design approach for precision critical instruments

- Based on cross-disciplinary modeling
- Incorporating "Virtual" sub-systems
  - Overcome the limitations caused by sub-system boundaries
- Based on explicit (modeled) knowledge
  - System behavior
  - Limitations
  - Implementation consequences
- Dealing with "uncertainty"
  - Environment cannot be modeled completely
  - Implementations cannot be described precisely
  - Striving for robust behavior



## Condor partners

- Embedded Systems Institute, Eindhoven, the Netherlands
- FEI: Carrying Industrial Partner
- University of Antwerp: EMAT
- University of Eindhoven
  - Department of Mathermatics
  - Department of Mechanical Engineering
  - Department of Electrical Engineering
- University of Delft
  - Control Systems Engineering
- University of Leuven
  - Software Engineering
- Technolution (hw/sw consultancy)



#### Condor details

- February 1<sup>st</sup> 2008 January 31<sup>st</sup> 2012
- 23 fte per year
- 6 PhD students, 5 Postdoc's
- Project management: ESI
- Funding by the dutch Ministry of Economic Affairs
- See www.esi.n/projects/Condor

This will keep me busy until retirement



## **TEAM** stage integration

Just some ideas, to get started

Control on separate PC

Goal: easy operation, not full integration



# How to proceed

Who does what when

